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GloballyLocally Dataset
Scenarios
4K total
1K per category (A – D)

Cameras
16 rendering angles
(per scenario)

Randomisation
block colours, textures, 
lights (per scenario)

Images
64K RGB images 
resolution: 224 x 224

Splits
train : val : test 

70 : 15 : 15
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Dataset: Stability Prediction and Visual Cues1

Stethoscopes: Unifying Adversarial Learning, Auxiliary Learning and Interpretability

Scrutinizing Physics with Neural Stethoscopes
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Results: Querying, Suppressing & Promoting Information in Latent Representations

Two Labels:

‣ global stability  
Will the tower fall 
over?  

‣ local stability  
Does the tower look 
crooked?

‣ Querying physical understanding of 
intuitive physics models

Overview

ℒy,s(θ, ψ) =

λ = 0

Adversarial Mode (Suppressing Information,             )
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‣ Training on a particular-
ly hard dataset leads 
the baseline algorithm 
to fail.

‣ Using ‘origin of global 
stability’ as a secondary 
label helps network by 
p r o m o t i n g h e l p f u l 
features.

‣ Training on a simple 
dataset leads to bias 
for visual cues (local 
stability).

‣ Suppressing extraction 
of respective infor-
mation de-biases the 
network and leads to 
performance gains.

λ > 0 λ < 0

The network is trained on two classification tasks:

Main task: in this case (global) stability prediction.

Secondary task: in this case either local stability or 
origin of global instability. 

The value chosen for hyper parameter λ determines 
whether second task is seen as adversarial, auxiliary, or 
purely analytic.

‣ Guiding the learning process in 
presence of misleading visual clues

‣ Introducing Neural Stethoscopes as 
unifying framework for querying, 
promoting and suppressing 
information in latent representations

‣ What information does the network extract?
‣ One Stethoscope is attached per network layer.
‣ This helps to understand the learning process.
‣ Analysis shown is for the Inception v4 network.

⇒ Labels for origin of stability enhance physical reasoning. ⇒ Adversarial training avoids focus on visual cues.

ℒy(θ) λ+ ⋅ ℒs(θ, ψ)

⇒ Visual cues influence learned representations.


