

ed Artificial NTELLIGENCE LAB

ShapeStacks Learning Vision-Based Physical Intuition for Generalised Object Stacking

Visual Geometry Group Department of Engineering Science University of Oxford

Introduction

ShapeStacks is a simulation dataset for the learning of vision-based physical intuition. We present a model for visual stability prediction and demonstrate its applicability in an object stacking task.

Dataset

The ShapeStacks dataset is openly available at http://shapestacks.robots.ox.ac.uk/

	CCS (# Scenarios)		Cubes (# Scenarios)	
Height	Train	Test	Train	Test
h = 2	1,626	286	2,040	360
h = 3	2,992	528	2,040	360
h = 4	2,084	368	1,890	332
h = 5	822	144	1,546	272
h = 6	234	40	1,250	220
# Scenarios	7,758	1,366	8,766	1,544

Each scenario features a unique object stack and is available as MuJoCo [1] simulation environment and RGB-D image sequence.

Segmentation maps annotate each object's mechanical contribution to tower stability.

Dataset, code and models available!

RGB images, segmentation & depth maps MJCF environments & simulation code ShapeStacks scenario generator pre-trained models for stability predictor

Oliver Groth, Fabian Fuchs, Ingmar Posner, Andrea Vedaldi

Stability Prediction

	ShapeStack Inception [2]	PhysNet [3] (trained on RGB images and segmentation maps)	VDA [4] (requires physics simulator during prediction)
SIM	84.9%	N/A	N/A
REAL	74.7%	66.7%	75.0%

Our model achieves state-of-the-art stability prediction accuracy on simulated and real [2] with a simplified training and images inference setup compared to related work.

Structure Analysis

An attention analysis of the stability predictor was conducted via a blur study and compared to the annotation of the stack mechanics via the ground truth segmentation maps.

	Violating object	First object to fall	Rest of tower	Back- ground
VCOM & VPSF	38.9%	29.3%	11.4%	20.4%
VCOM	32.7%	30.8%	13.8%	22.7%
VPSF	52.1%	26.3%	6.3%	15.4%
Random chance	1.6%	1.9%	3.5%	93.0%
Random in tower	19.3%	22.9%	42.2%	14.5%

Significant focus on mechanically relevant **regions** implies an intuitive understanding of the centre-of-mass principle (COM).

References

[1] Todorov, E., Erez, T., Tassa, Y.: *MuJoCo: A physics engine for model-based control.* IROS, 2012. [2] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI, 2017. [3] Lerer, A., Gross, S., Fergus, R.: Learning Physical Intuition of Block Towers by Example. ICML, 2016. [4] Wu, J., Lu, E., Kohli, P., Freeman, W. T., Tenenbaum, J. B.: Learning to See Physics via Visual De-animation. NIPS, 2017.

indicates the **capability** of an Stackability **object to support** the others in the set. The score correlates positively with the projected surface area as long as the support support interface is planar.

Stackability Score

Ranking of random object set with respect to stackability, i.e. the stacking order of objects which affords the highest possible tower.

diverse

UNIVERSITY OF OXFORD

Stacking Task

Ranking, orientation and placement of objects in a tower based on the stability prediction via a simulated annealing process.

The stability predictor is used to determine stable stacking positions. Predictors trained on towers (Cuboids-Cylinders-Spheres) perform best building stacks with an average height of eight objects.

> research funded by **ERC 677195-IDIU**

uropean Research Council lished by the European Commissior